Package: TAR 1.0

TAR: Bayesian Modeling of Autoregressive Threshold Time Series Models

Identification and estimation of the autoregressive threshold models with Gaussian noise, as well as positive-valued time series. The package provides the identification of the number of regimes, the thresholds and the autoregressive orders, as well as the estimation of remain parameters. The package implements the methodology from the 2005 paper: Modeling Bivariate Threshold Autoregressive Processes in the Presence of Missing Data <doi:10.1081/STA-200054435>.

Authors:Hanwen Zhang, Fabio H. Nieto

TAR_1.0.tar.gz
TAR_1.0.zip(r-4.5)TAR_1.0.zip(r-4.4)TAR_1.0.zip(r-4.3)
TAR_1.0.tgz(r-4.4-any)TAR_1.0.tgz(r-4.3-any)
TAR_1.0.tar.gz(r-4.5-noble)TAR_1.0.tar.gz(r-4.4-noble)
TAR_1.0.tgz(r-4.4-emscripten)TAR_1.0.tgz(r-4.3-emscripten)
TAR.pdf |TAR.html
TAR/json (API)

# Install 'TAR' in R:
install.packages('TAR', repos = c('https://hanwengutierrez.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.74 score 5 stars 11 scripts 459 downloads 12 mentions 10 exports 1 dependencies

Last updated 8 years agofrom:0b89afdf66. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winOKOct 25 2024
R-4.5-linuxOKOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:ARorder.lognormARorder.normLS.lognormLS.normParam.lognormParam.normreg.thr.lognormreg.thr.normsimu.tar.lognormsimu.tar.norm

Dependencies:mvtnorm